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Abstract
In this paper, we report a kind of complicated dichotomous noise and investigate
the escape over the fluctuating potential barrier for the one-dimensional
process driven by this ‘complicated dichotomous noise’. The study shows
that the mean first passage time for a particle over the fluctuating potential
barrier exhibits the resonant activation as the function of the transition rate
of the complicated dichotomous noise. The effect of the parameters of this
complicated dichotomous noise on the resonant activation is studied. In
addition, a kind of more complicated dichotomous noise is introduced in the
appendices.

PACS number: 05.40.Ca

1. Introduction

Recently the conventional problems of the escape over the fluctuating potential barrier have
attracted a great deal of attention [1–20]. It was shown that the mean first passage time (MFPT)
of a particle driven by additive noises over a fluctuating potential barrier exhibits a minimum
as a function of the flipping rate of the fluctuating potential barrier [1–20] (or the transition
rate of the dichotomous noise). This phenomenon is called ‘resonant activation’, and first
identified by Doering and Gadoua [1] and further studied by a number of other authors [2–20].
Now, except for the theoretical reports about the resonance activation phenomenon [1–20],
this phenomenon was found in experiments [21–23].

Earlier studies of activation of MFPT over fluctuating potentials were restricted to limiting
cases, i.e., slow [24] or fast [25, 26] barrier fluctuations, or small fluctuations [19]. Owing to
using approximate treatments in [24–26], the resonant activation cannot be observed. Recently
in [1–20], the authors reported results concerning the escape time (i.e. MFPT) over a fluctuating
potential in the absence of approximate treatments as in [24–26]. They revealed the resonant
activation (RA) of MFPT over the fluctuating potential barrier.

In this paper, we will report a kind of complicated dichotomous noise and investigate the
escape over the fluctuating potential barrier for the one-dimensional process driven by this
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‘complicated dichotomous noise’. The setup of the problem is as follows: we first introduce a
new kind of ‘complicated dichotomous noise’, and consider one-dimensional process driven
by the complicated dichotomous noise and derive the master equation for the process. Then,
using the master equation, we will study the escape over the fluctuating potential barrier.
In addition, a new kind of more complicated dichotomous noise will be introduced in the
appendices.

2. Complicated dichotomous noise

When dealing with the dichotomous noise, we usually believe that it takes two different
constant values. In this section, we report a kind of dichotomous noise whose one or two value
is Gaussian white noise. We call this kind of dichotomous noise ‘complicated dichotomous
noise’.

Case I. A kind of dichotomous noise whose one value is Gaussian white noise.
In this case, we assume that the dichotomous noise ξ(t) takes values a and η(t), where

a is a constant , and η(t) a Gaussian white noise with zero mean and correlation function
〈η(t)η(t ′)〉 = 2D1δ(t − t ′). The transition rates for ξ(t) from a to η(t) or vice versa are
respectively, µ and µ′. The master equation for the probability density of ξ(t) is

∂tP (η, t) = −µ′P(η, t) + µP(a, t),
(1)

∂tP (a, t) = −µP(a, t) + µ′P(η, t).

Case II. A kind of dichotomous noise whose both values are Gaussian white noises.
Now, we assume that the dichotomous noise ξ(t) takes values η1(t) and η2(t), in

which η1(t) and η2(t) are Gaussian white noises with zero means and correlation functions
〈η1(t)η1(t

′)〉 = 2D1δ(t − t ′), 〈η2(t)η2(t
′)〉 = 2D2δ(t − t ′) and 〈η1(t)η2(t

′)〉 = 0. The
transition rates for ξ(t) from η1(t) to η2(t) and vice versa are respectively µ and µ′. The
master equation for the probability density of ξ(t) is

∂tP (η1, t) = −µP(η1, t) + µ′P(η2, t),
(2)

∂tP (η2, t) = −µ′P(η2, t) + µP(η1, t).

Above, we introduce the complicated dichotomous noise, below we will consider one-
dimensional process driven by complicated dichotomous noise, and derive the master equation
for the process. Then, using the master equation, we will study the escape over the fluctuating
potential barrier.

3. One-dimensional process driven by the complicated dichotomous noise and the
master equation

In this section, we consider a one-dimensional process subject to the complicated dichotomous
noise. The Langevin equation of this process is

ẋ = f (x) + g(x)ξ(t) + ζ(t), (3)

where f (x) and g(x) are deterministic functions of x, ξ(t) is the complicated dichotomous
noise, and ζ(t) a Gaussian white noise with zero mean and correlation function 〈ζ(t)ζ(t ′)〉 =
2Dδ(t − t ′). There is no correlation between ξ(t) and ζ(t). ξ(t) is the same as given in
section 2.
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3.1. A kind of the dichotomous whose one value is Gaussian white noise

When the dichotomous noise ξ(t) takes the constant value a, equation (3) becomes

ẋ = f (x) + ag(x) + ζ(t). (4)

The Fokker–Planck equation (FPE) for equation (4) is

∂tP
′(x, t) = −∂x[f (x) + ag(x)]P ′(x, t) + D∂2

xP ′(x, t). (5)

When the dichotomous noise ξ(t) takes the Gaussian white noise η(t), equation (3)
becomes

ẋ = f (x) + g(x)η(t) + ζ(t). (6)

The FPE of equation (6) is

∂tP
′′(x, t) = −∂xf (x)P ′′(x, t) + D1∂xg(x)∂xg(x)P ′′(x, t) + D∂2

xP ′′(x, t). (7)

Since now there is a joint process about x, ξ(t) and ζ(t) for equation (3), the master
equation of equation (3) is

∂tP1 = −µP1 + µ′P2 − ∂x[f (x) + ag(x)]P1 + D∂2
xP1,

(8)
∂tP2 = −µ′P2 + µP1 − ∂xf (x)P2 + D1∂xg(x)∂xg(x)P2 + D∂2

xP2,

where P1 = P(x, t, a) and P2 = P(x, t, η). P(x, t, a) represents that the particle is at x,
and the noise ξ(t) in ξ(t) = a configuration, and P(x, t, η) does that the particle is at x
and the noise ξ(t) in ξ(t) = η(t) configuration. The probability density for equation (3) is
P(x, t) = P1 + P2.

3.2. A kind of the dichotomous whose both values are Gaussian white noises

We consider a process whose Langevin equation is also equation (3). If the dichotomous
noise ξ(t) only takes η1(t), the FPE corresponding to equation (3) is ∂tP1 = −∂xf (x)P1 +
D1∂xg(x)∂xg(x)P1 + D∂2

xP1. If ξ(t) only takes η2(t), the FPE is ∂tP2 = −∂xf (x)P2 +
D2∂xg(x)∂xg(x)P2 + D∂2

xP2. So, the master equation for this process is

∂tP1 = −µP1 + µ′P2 − ∂xf (x)P1 + D1∂xg(x)∂xg(x)P1 + D∂2
xP1,

(9)
∂tP2 = −µ′P2 + µP1 − ∂xf (x)P2 + D2∂xg(x)∂xg(x)P2 + D∂2

xP2.

4. Escape over fluctuating potential barrier

In this section, we use the master equation (8) [or (9)] to deal with the problem of the escape
over the fluctuating potential barrier [1–26]. The Langevin equation of this problem is

ẋ = −∂xU(x) + ξ(t) + ζ(t), (10)

in which U(x) is the potential, which is a symmetric piecewise linear ratchet (see figure 1).
ξ(t) and ζ(t) are the same as above. The fluctuating potential barrier U(x, t) satisfies

∂xU(x, t) = ∂xU(x) − ξ(t).
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x=2x=0 x=3x=1x=-1

U=E

Figure 1. The symmetric piecewise linear ratchet potential barrier. For the numerical simulation
in this paper, we take L = 2.

4.1. Case I: one value of ξ(t) is Gaussian white noise

According to equation (8), the master equation of equation (10) is (µ = µ′)

∂tP1 = −µP1 + µP2 + (E − a)∂xP1 + D∂2
xP1,

(11)
∂tP2 = −µP2 + µP1 + E∂xP2 + (D + D1)∂

2
xP2.

We assume that the particle starts at x = −1. So, the initial condition is Pi(x, 0) =
1
2δ(x + 1). The reflecting boundary condition is ∂xPi(x, t)|x=−1 = 0, and the absorbing
boundary condition Pi(x, t)|x=0 = 0. The backward master equation for equation (11) is [27]

∂tG1 = −µG1 + µG2 − (E − a)∂xG1 + D∂2
xG1,

(12)
∂tG2 = −µG2 + µG1 − E∂xG2 + (D + D1)∂

2
xG2.

The mean first passage time (MTPT) is defined as [27]

Ti(x) = −
∫ ∞

0
t∂tGi(x, t) dt =

∫ ∞

0
Gi(x, t) dt, (13)

where i = 1 and 2.
From equations (12) and (13), we can obtain the MFPT equations for equation (10) as

follows:

−µT1 + µT2 − (E − a)∂xT1 + D∂2
xT1 + 1/2 = 0,

(14)
−µT2 + µT1 − E∂xT2 + (D + D1)∂

2
xT2 + 1/2 = 0.

The reflecting boundary condition and the absorbing boundary condition are respectively
∂xTi(−1) = 0, Ti(0) = 0. The MFPT for a particle over the fluctuating potential barrier that
starts at x = −1 is T = ∑2

i=1 Ti(−1).
Generally, we cannot get the exact expression of the MFPT. But, in the case when

2E − a = 0, it is simple enough to summarize analytically. In this case, the MFPT for a
particle over a fluctuating potential barrier is explicitly

T = (
1 − k

(2)
1

)
A

(1)
1 exp(−λ1)/λ1 +

(
1 − k

(2)
2

)
A

(1)
2 exp(−λ2)/λ2 + 2B

(1)
3

+ M2 + P2A
(1)
3 + q2 − 2A

(1)
3 − N2 − µ/[(2D + D1)µ + E2], (15)

where

λ1,2 = [ − ED1 ±
√

E2(2D + D1)2 + 4µ(D2 + DD1)(2D + D1)
]
/[2D(D + D1)],

A
(1)
1 = M2+q2−µP2/[(2D+D1)µ+E2]−N2[(1−k

(2)
2 )/λ2+P2 exp(−λ2)/(1−k

(2)
2 ]

(1−k
(2)
1 )/λ1+P2 exp(−λ1)−(1−k

(2)
1 ) exp(λ2−λ1)/λ2−P2(1−k

(2)
1 ) exp(−λ1)/(1−k

(2)
2 )

,

A
(1)
2 = −A

(1)
1

(
1 − k

(2)
1 exp(−λ1 + λ2)

/(
1 − k

(2)
2

)
+ N2 exp(λ2)

/(
1 − k

(2)
2 ,

A
(1)
3 = −A

(1)
1 exp(−λ1) − A

(1)
2 exp(−λ2) − µ/[(2D + D1)µ + E2],
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and

B
(1)
3 = −A

(1)
1

/
λ1 − A

(1)
2

/
λ2,

with

k1
j = 1, K

(2)
j = 1 + Eλj/µ − (D + D1)λ

2
j

/
µ(j = 1, 2), N1 = 0,

N2 = −E/[(2D + D1)µ + E2], M1 = 0,

M2 = (D + D1)/[(2D + D1)µ + E2], P2 = E/µ,

and q2 = −1/(2µ).
When 2E −a �= 0, we cannot analytically obtain the exact expression of the MFPT. Now,

taking ∂xTi = s(i) (i = 1, 2), equation (14) becomes

∂x




s1

T1

s2

T2


 =




E
D+D1

µ

D+D1
0 µ′

D+D1

1 0 0 0
0 −µ

D
E−a
D

µ

D

0 0 1 0







s1

T1

s2

T2


 +




− 1
2(D+D1)

0
− 1

2D

0


 . (16)

By numerical simulation and analysis we can find that when 2E − a �= 0 the matrix
of the homogeneous part about Ti and si (i = 1, 2) in equation (16) has three nonzero real
independent eigenvalues and a zero eigenvalue. So, the general solution of equation (16) is

si =
3∑

j=1

A
(i)
j exp(λjx) + A

(i)
4 + A

(i)

5 x, Ti =
3∑

j=1

B
(i)
j exp(λjx) + B

(i)
4 + B

(i)

5 x, (17)

where i = 1,2, λj (j = 1, 2, 3) is the above-mentioned nonzero eigenvalues. Substituting
equation (17) into equation (16) and using the comparing-coefficient method, we obtain B

(i)
j =

A
(i)
j

/
λj ,A

(i)

5 = 0, B
(i)

5 = A
(i)
4 , A

(1)
4 = A

(2)
4 = 1

2E−a
, B

(i)
4 = B

(1)
4 + Fi , and A

(i)
j = K

(i)
j A

(1)
j ,

with F1 = 0, F2 = a
2µ(2E−a)

, K
(1)
j = 1, and K

(2)
j = −(D + D1)λ

2
j

/
µ + 1 + Eλj/µ. So,

equation (17) becomes

si =
3∑

j=1

K
(i)
j A

(1)
j exp(λjx) +

1

2E − a
,

(18)

Ti =
3∑

j=1

K
(i)
j A

(1)
j

1

λj

exp(λjx) + B
(1)
4 + Fi +

1

2E − a
x.

Then, substituting equation (18) into the boundary conditions Ti(0) = 0 and si(−1) = 0, we
can obtain a linear algebraic system for A

(1)
j (j = 1, 2, 3) and B

(1)
4 . From the linear algebraic

equations of this algebraic system we can derive A
(1)
j and B

(1)
4 . The MFPT for a particle over

the fluctuating barrier is

T =
2∑

i=1

Ti(−1) =
2∑

i=1

3∑
j=1

K
(i)
j A

(1)
j

λj

exp(−λj ) + 2B
(1)
4 + F2 − 2

2E − a
. (19)

In figures 2 and 3, the ln of the MFPT versus the ln of the transition rate µ of the
complicated dichotomous noise is plotted when 2E − a = 0 and 2E − a �= 0, respectively.
Figures 2(a) and 3(a) correspond to the ln of T versus the ln of µ for different values of a,
figures 2(b) and 3(b) to that for different values of D1. The figures show that the MFPT
of the particle over the fluctuating potential barrier exhibit a minimum as a function of the
transition rate of the complicated dichotomous noise. This phenomenon has been reported in
[1–23], which has been named as ‘resonant activation’. A reason for the resonant activation
(RA) happening here is given below. The resonance in figures 2(a), (b), 3(a) and (b) occurs
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Figure 2. The ln of the MFPT versus the ln of the transition rate µ of the complicated dichotomous
noise when 2E − a = 0 for model (10) in case I. Part (a) corresponds to the ln of the MFPT
versus the ln of µ for different values of a (a = 30, 20, 10, 5, 0 and -10) with D = 1 and
D1 = 2; (b) to that for different values of D1 (D1 = 0, 0.1, 0.5, 1, 2, 4 and 6) with D = 1 and
a = 30. The marked points (1)–(4) in figure 2(a) and points (1)–(4) in 2(b) are the points where
the transition time equals the MFPT over the fluctuating barrier with the effective potential barrier
in U = min(E − a, E

1+D1/D
) configuration.

when the crossing takes place with the fluctuation effective potential barrier1 most likely being
in U = min

(
E − a, E

1+D1/D

)
configuration (i.e., the ‘down’ configuration). Now the MFPT

1 For equation (11), we define the effective potential U eff
1 = E−a

D
D = E−a of the first equation; then, for the second

equation the effective potential is U eff
2 = E

D+D1
D = E

1+D1/D
. So, for equation (11), now there are two configurations,

U eff
1 = E − a and U eff

2 = E
1+D1/D

.
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Figure 3. The ln of the MFPT versus the ln of the transition rate µ of the complicated dichotomous
noise when 2E − a �= 0 for model (10) in case I. Part (a) corresponds to the ln of the MFPT versus
the ln of µ for different values of a ( a = −6, − 4, − 2, 0, 3, 5 and 8) with D = 1,D1 = 2 and
E = 15; (b) to that for different values of D1 (D1 = 0, 0.1, 0.5, 1, 2, 4, 6 and 8) with D = 1, E =
15 and a = 0.5. The marked points (1) and (2) in figure 3(a) and points (1)–(6) in figure 3(b) are
the points where the transition time equals the MFPT over the fluctuating barrier with the potential
barrier in U = min(E − a, E

1+D1/D
) configuration.

has a minimum for the fluctuating potential barrier transition rate of the order of the inverse
of the time required to cross the potential with the fluctuation effective potential barrier in
U = min

(
E − a, E

1+D1/D

)
configuration. In figures 2(a), (b), 3(a) and (b), we plot some

points where the transition time equals the MFPT over the fluctuating potential barrier with
the fluctuation effective potential barrier in U = min

(
E − a, E

1+D1/D

)
configuration. It is clear

that this accords with the above reason for the RA happening in figures 2(a), (b), 3(a) and (b).
When the resonant activation emerges, the fluctuation effective potential is rarely probably in
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U = max
(
E − a, E

1+D1/D

)
configuration (now the fluctuation effective potential is most likely

in U = min
(
E − a, E

1+D1/D

)
configuration). In addition, we find that, when 2E − a = 0,

the absolute value of a can enhance the RA with the increase of the absolute values of a,
but D1 can weaken it with the increase of the values of D1, which can be observed from
figures 2(a) and (b). When 2E − a �= 0, the negative value of a can enhance the RA, while
the positive value of a can weaken it, with the increase of the absolute values of a, which can
be seen from figure 3(a); in figure 3(b), we can observe that the good RA effect is for D1 = 2,
which corresponds approximately to the behaviour of figure 3(a) for a = 0, in some sense this
D1 = 2 should be an optimal value to observe RA for the parameter values considered.

4.2. Case II: two values of ξ(t) are Gaussian white noises

Now, according to equation (9), the master equation of equation (10) is (µ = µ′)

∂tP1 = −µP1 + µP2 + E∂xP1 + (D + D1)∂
2
xP1,

(20)
∂tP2 = −µP2 + µP1 + E∂xP2 + (D + D2)∂

2
xP2.

Similarly, we assume that the particle starts at x = −1. The boundary conditions for
equation (20) are the same as for equation (11).

The equations for the MFPT over the fluctuating barrier is

−µT1 + µT2 − E∂xT1 + (D + D1)∂
2
xT1 + 1/2 = 0,

(21)
−µT2 + µT1 − E∂xT2 + (D + D2)∂

2
xT2 + 1/2 = 0.

The boundary conditions for equation (21) are ∂xTi(−1) = 0 and Ti(0) = 0. The MFPT for a
particle over the fluctuating potential barrier is T = ∑2

i=1 Ti(−1).
Taking ∂xTi = si , equation (21) can be written as

∂x




s1

T1

s2

T2


 =




E
D+D1

µ

D+D1
0 µ

D+D1

1 0 0 0

0 − µ

D+D2

E
D+D2

µ

D+D2

0 0 1 0







s1

T1

s2

T2


 +




− 1
2(D+D1)

0
− 1

2(D+D2)

0


 . (22)

Numerical simulation and analysis show that the eigenvalues of the matrix of the
homogeneous part about Ti and si (i = 1, 2) in equation (22) are real and independent,
and there is a zero eigenvalue. Using the method for deriving equation (18), we can get the
general solution of equation (22). It is

si =
3∑

j=1

K
(i)
j A

(1)
j exp(λjx) +

1

E
,

(23)

Ti =
3∑

j=1

1

λj

K
(i)
j A

(1)
j exp(λjx) +

x

E
+ B

(1)
4 ,

where i = 1, 2, K
(1)
j = 1 and K

(2)
j = 1 + Eλj/µ − (D + D1)λ

2
j

/
µ. λj (j = 1, 2, 3) are three

real independent nonzero eigenvalues of the matrix of the homogeneous part in equation (22).
Substituting equation (23) into the boundary conditions Ti(0) = 0 and si(−1) = 0

(i = 1, 2), one can get four linear algebraic equations for A
(1)
j (j = 1, 2, 3) and B

(1)
4 . From
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these linear algebraic equations, one can obtain A
(1)
j and B

(1)
4 . The MFPT for a particle over

the fluctuating barrier is

T =
2∑

i=1

Ti(−1) =
2∑

i=1

3∑
j=1

K
(i)
j A

(1)
j

λj

exp(−λj ) + 2B
(1)
4 − 2

E
. (24)

In figures 4 and 5, we plot the ln of the MFPT as the function of the transition rate µ

of the complicated dichotomous noise for different values of D1 (figure 4(a) corresponds to
D1 = 0, 0.5, 1, 2 and 2.7 with D = 1, D2 = 3 and E = 15, figure 4(b) to D1 = 3.3, 5,
7, 9 and 14 with D = 1, D2 = 3 and E = 15), and for different values of D2 (figure 5(a)
corresponds to D2 = 0, 0.2, 0.6, 0.9 and 0.95 with D = 1, D1 = 1 and E = 15, figure 5(b) to
D2 = 1.05, 3, 7, 9 and 14 with D = 1, D1 = 1 and E = 15), respectively. From the figures,
we can find that there is the RA for the MFPT over the fluctuating potential barrier as the
function of the transition rate µ. The resonance for the RA occurs when the crossing takes
place with the fluctuation effective potential barrier2 most likely in U = min

(
E

1+D1/D
, E

1+D2/D

)
configuration. Now the MFPT has a local minimum for the fluctuation potential barrier
transition rate of the order of the inverse of the time required to cross the fluctuation barrier
with the fluctuation effective potential barrier in U = min

(
E

1+D1/D
, E

1+D2/D

)
configuration. In

figures 4(a), (b), 5(a) and (b), we plot some points where the transition time equals the MFPT
over the fluctuating barrier with the effective potential barrier in U = min

(
E

1+D1/D
, E

1+D2/D

)
configuration. When the resonant activation emerges, the fluctuation effective potential is
rarely probably in U = max

(
E

1+D1/D
, E

1+D2/D

)
configuration (now the fluctuation effective

potential is most likely in U = min
(

E
1+D1/D

, E
1+D2/D

)
configuration). Moreover, the study

shows that, for definite values of D,D2 and E, when D1 = 0 the RA is the most distinct (see
figure 4(a)); for definite values of D,D1 and E, when D2 = 0 the RA is the most distinct (see
figure 5(a)).

For this kind of complicated dichotomous noise, when D1 = D2 = D0, the complicated
dichotomous noise ξ(t) will become a Gaussian white noise ξ0(t) with zero mean and
correlation function 〈ξ0(t)ξ0(t

′)〉 = 2D0δ(t − t ′). So, when D1 = D2, the MFPT will
become T = (exp(r1)/r1 − 1/r1 − 1)/r1 with r1 = E/(D + D0) (which is not related to
the transition rate µ). It is clear that now no RA exists. In figures 4(a) and (b), when
D1 = D2 = 3, ln T

.= 1.01, which is marked in these figures; in figures 5(a) and (b), when
D1 = D2 = 1, ln T

.= 4.17 (which is also marked in these figures).

5. Conclusion and discussion

In conclusion, we report a kind of ‘complicated dichotomous noise’ and investigate the
escape over the fluctuating potential barrier for the one-dimensional process driven by the
‘complicated dichotomous noise’. Study shows that the mean first passage time for a particle
over the fluctuating potential barrier exhibits the resonant activation as the function of the
transition rate of the ‘complicated dichotomous noise’. The effect of the parameters of the
‘complicated dichotomous noise’ on the resonant activation is studied. The motivation for
considering activation over fluctuating potential barriers was to study the models of relaxation
in complex many-body systems.

I have noted that Dubkov, Agudov and Spagnolo obtained the resonant activation effect
with a theoretical approach, without any approximation in the noise intensity, the parameter

2 As in footnote 1, for equation (20), we define the effective potential U eff
1 = E

D−D1
D = E

1+D1/D
of the first equation;

then, for the second equation the effective potential is U eff
2 = E

D+D2
D = E

1+D2/D
. Thus, equation (20) now has two

configurations, U eff
1 = E

1+D1/D
and U eff

2 = E
1+D2/D

.
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Figure 4. The ln of the MFPT versus the ln of the transition rate µ of the complicated dichotomous
noise for different values of D1 with D = 1, D2 = 3 and E = 15 for model (10) in case II. Part
(a) corresponds to the ln of the MFPT versus the ln of µ for D1 = 0, 0.5, 1, 2 and 2.7; (b) to that
for D1 = 3.3, 5, 7, 9 and 14. The marked points (1), (2) and (3) in figure 4(a) and points (1)–(4)
in figure 4(b) are the points where the transition time equals the MFPT over the fluctuating barrier
with the potential barrier in U = min( E

1+D1/D
, E

1+D2/D
) configuration. The marked point (4) in

figure 4(a) and that (5) in figure 4(b) are the points where D1 = D2 = 3.

of the potential and the rate of the dichotomous noise [28, 29]. Specifically in [28] an
enhancement of the escape time as a function of the mean flipping rate of the dichotomous
noise was obtained together with the RA effect (see figure 5 in [28]). This peculiar behaviour
was recently experimentally observed in a Josephson junction [23].

In [30], Horsthemke, Doering, Ray and Burschka investigated a reversible diffusion-
limited-coagulation reaction A + A ←→ A with irreversible input B −→ A in one spatial
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Figure 5. The ln of the MFPT versus the ln of the transition rate µ of the complicated dichotomous
noise for different values of D2 with D = 1, D1 = 1 and E = 15 for model (10) in case II. Part
(a) corresponds to the ln of the MFPT versus the ln of µ for D2 = 0, 0.2, 0.6, 0.9 and 0.95; (b) to
that for D2 = 1.05, 3, 7, 9 and 14. The marked points (1) and (2) in figure 5(a) and points (1)–(4)
in figure 5(b) are the points where the transition time equals the MFPT over the fluctuating barrier
with the potential barrier in U = min( E

1+D1/D
, E

1+D2/D
) configuration. The marked point (3) in

figure 5(a) and that (5) in figure 5(b) are the points where D1 = D2 = 1.

dimension, and derived explicit results for the interparticle distribution function, i.e., the
probability density for finding the nearest particle a distance x from a given particle, with
external dichotomous noise in the birth rate, and in particular the limiting case that the birth
rate fluctuates between zero and fixed positive values. But they have not considered the mean
first passage time for the particle over the fluctuating potential barrier. If they had studied the
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mean first passage time for the particle over the fluctuating barrier, a phenomenon of resonant
activation should have been found for the system they considered.

In this paper, we introduce a kind of ‘complicated dichotomous noise’. But practically,
there are a lot of more complicated dichotomous noises, such as the one given in the appendices
(see the appendices). In the appendices, we introduce a kind of more complicated dichotomous
noise. We call it ‘more complicated dichotomous noise’.
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Appendix A. A kind of dichotomous noise whose one value is stochastic about x and t

We consider a dichotomous noise η(x, t) which takes a stochastic value ξ1(x, t) and a variable
value a(x), where ξ1(x, t) is stochastic Gaussian variable with respect to x and t with zero
mean and correlation function 〈ξ1(x, t)ξ1(y, s)〉 = 2w(x, y)δ(t − s), and a(x) a deterministic
function of x. The transition rates for η(x, t) from ξ1(x, t) to a(x) and vice verse are µ and
µ′, respectively. The master equation for the noise η(x, t) are

∂tP (t, ξ1(x, t)) = −µP(t, ξ1(x, t)) + µ′P(t, a(x)),
(A.1)

∂tP (t, a(x)) = −µ′P(t, a(x)) + µP(t, ξ1(x, t)),

In the following, we study a system with this dichotomous noise whose Langevin equation
is

ẋ = f (x) + g(x)η(x, t), (A.2)

in which f (x) and g(x) are determined function of x.
When the dichotomous noise only takes the stochastic value ξ1(x, t), equation (A.2)

becomes

ẋ = f (x) + g(x)ξ1(x, t). (A.3)

To get the probability density equation of equation (A.3), we assume its probability density

P2(x, t) = 〈δ(x − x(t))〉, (A.4)

where x(t) is the solution of equation (A.2). Differentiating equation (A.4) with respect to t ,
we obtain

∂tP2(x, t) = 〈∂tδ(x − x(t))〉
= −

〈
dx(t)

dt
∂xδ(x − x(t))

〉
= −〈[f (x(t)) + g(x(t))ξ1(x, t)]∂xδ(x − x(t))〉

= −∂xf (x)P2(x, t) − ∂x〈g(x)ξ1(x, t)δ(x − x(t))〉
= −∂xf (x)P2(x, t) − ∂x

∫ ∫ t

0
dx ′ dt ′〈ξ1(x, t)ξ1(x

′, t ′)〉
〈
δ[g(x)δ(x − x(t))]

δξ1(x ′, t ′)

〉

= −∂xf (x)P2(x, t) − ∂x

∫ ∫ t

0
dx ′ dt ′2w(x, x ′)δ(t − t ′)

×
[
−

〈
δx(t)

δξ1(x ′, t ′)
g(x)∂xδ(x − x(t))

〉]

= −∂xf (x)P2(x, t) + ∂xw(x, x(t))g(x(t))g(x)∂xP2(x), (A.5)
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where we have used the identities f (x(t))δ(x(t) − x) = f (x)δ(x(t) − x) and
g(x(t))ξ1(x(t), t)δ(x − x(t)) = g(x)ξ1(x, t)δ(x − x(t)), and the Furutsu–Novikov formula
[31].3 Noting the identities w(x, x(t))g2(x(t))∂xP2 = ∂x[w(x, x(t))g(x)g(x(t))P2] −
[∂xw(x, x(t))]g(x)g(x(t))P2 − w(x, x(t))[∂xg(x)]g(x(t))P2, w(x, x(t))g(x)g(x(t)) =
w(x, x)g2(x)δ(x−x(t)), [∂xw(x, x(t))]g(x(t))δ(x−x(t)) = [∂xw(x, x(t))]|x(t)=xg(x)δ(x−
x(t)), and w(x, x(t))g(x(t))δ(x − x(t)) = w(x, x)g(x)δ(x − x(t)), equation (A.5) can be
written as

∂tP2(x, t) = −∂xA(x)P2(x, t) + ∂2
xB(x)P2(x, t), (A.6)

in which A(x) = f (x) + w(x, x)(∂xg(x))g(x) + [∂xw(x, x(t)]|x(t)=xg
2(x), and B(x) =

w(x, x)g2(x).
Since now there is a joint process (x, η(x, t)) for equation (A.2), the master equations for

equation (A.2) should read

∂tP (x, t, ξ1) = −µP(x, t, ξ1) + µ′P(x, t, a(x)) − ∂xA(x)P (x, t, ξ1) + ∂2
xB(x)P (x, t, ξ1),

∂tP (x, t, a(x)) = −µ′P(x, t, a(x)) + µP(x, t, ξ1) − ∂x[f (x) + g(x)a(x)]P(x, t, a(x)).

(A.7)

Let P(x, t) = P(x, t, ξ1)+P(x, t, a(x)) and P1(x, t) = P(x, t, ξ1)−P(x, t, a(x)), here
P(x, t) is the probability density for equation (A.2). Then, equation (A.7) becomes

∂tP (x, t) = − 1
2∂x[A(x) + f (x) + g(x)a(x)]P(x, t) − 1

2∂x[A(x) − f (x) − g(x)a(x)]P1(x, t)

+ 1
2∂2

xB(x)P (x, t) + 1
2∂2

xB(x)P1(x, t),

∂tP1(x, t) = −(µ − µ′)P − (µ + µ′)P1 − 1
2∂x[A(x) − f (x) − g(x)a(x)]P(x, t)

− 1
2∂x[A(x) + f (x) + g(x)a(x)]P1(x, t) + 1

2∂2
xB(x)P (x, t)

+ 1
2∂2

xB(x)P1(x, t). (A.8)

Now we cannot analytically get the exact expression of the stationary solution of the
probability density, even in the natural boundary condition.

Appendix B. A kind of dichotomous noise whose both values are stochastic about x and t

Here we consider a dichotomous noise ξ(x, t) whose two values are both stochastic. ξ(x, t)

takes stochastic variable values η1(x, t) and η2(x, t). We assume that η1(x, t) and η2(x, t)

are stochastic Gaussian variables about x and t with zero means and correlation functions
〈η1(x, t)η1(x

′, t ′)〉 = 2υ1(x, x ′)δ(t − t ′), 〈η1(x, t)η2(x
′, t ′)〉 = 0 and 〈η2(x, t)η2(x

′, t ′)〉 =
2υ2(x, x ′)δ(t − t ′). The transition rates for ξ(x, t) from η1(x, t) to η2(x, t) or vice verse are
respectively µ and µ′.

Below we investigate a system driven by this noise. The Langevin equation of this system
is

ẋ = f (x) + g(x)ξ(x, t), (B.1)

where f (x) and g(x) are the same as in equation (A.2).
First, we consider the master equations for the noise ξ(x, t). They are

∂tP (t, η1(x, t)) = −µP(t, η1(x, t)) + µ′P(t, η2(x, t)),
(B.2)

∂tP (t, η2(x, t)) = −µ′P(t, η2(x, t)) + µP(t, η1(x, t)).

3 The formula obtained by Furutsu and Novikov is 〈ξ(r)R[ξ ]〉 = ∫
dr′〈ξ(r)ξ(r′)〉〈 δR(ξ)

δξ(r′) 〉, where ξ(r) is Gaussian
with respect to the variable r.
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Secondly, let us consider the probability density equations for equation (B.1) when
ξ(x, t) takes η1(x, t) and η2(x, t), respectively. When the noise ξ(x, t) only takes η1(x, t),
the probability density equation for equation (B.1) is

∂tP3(x, t) = −∂xA
(1)(x)P3(x, t) + ∂2

xB(1)(x)P3(x, t), (B.3)

where A(1)(x) = f (x) + υ1(x, x)(∂xg(x))g(x) + [∂xυ1(x, x(t))]|x(t)=xg
2(x), and B(1)(x) =

υ1(x, x)g2(x). Equation (B.3) can be obtained as equation (A.6) of equation (A.3). Similarly,
we can obtain the probability density equation for equation (B.1) when ξ(x, t) only takes
η2(x, t)

∂tP4(x, t) = −∂xA
(2)(x)P4(x, t) + ∂2

xB(2)(x)P4(x, t), (B.4)

with A(2) = f (x) + υ2(x, x)(∂xg(x))g(x) + [∂xυ2(x, x(t))]|x(t)=xg
2(x), and B(2)(x) =

υ2(x, x)g2(x).
So, the master equations for equation (B.1) read

∂tP (x, t, η1)= − µP(x, t, η1) + µ′P(x, t, η2)−∂xA
(1)(x)P (x, t, η1) + ∂2

xB(1)(x)P (x, t, η1),

∂tP (x, t, η2)= − µ′P(x, t, η2) + µP(x, t, η1)−∂xA
(2)(x)P (x, t, η2) + ∂2

xB(2)(x)P (x, t, η2).

(B.5)

Let P(x, t) = P(x, t, η1) + P(x, t, η2) and P1(x, t) = P(x, t, η1) − P(x, t, η2). The
probability density P(x, t) for equation (B.1) can be obtained as follows:

∂tP (x, t) = − 1
2∂x(A

(1)(x) + A(2)(x))P (x, t) − 1
2∂x(A

(1)(x) − A(2)(x))P1(x, t)

+ 1
2∂2

x (B(1)(x) + B(2)(x))P (x, t) + 1
2∂2

x (B(1)(x) − B(2)(x))P1(x, t),

∂tP1(x, t) = −(µ − µ′)P (x, t) − (µ + µ′)P1(x, t) − 1
2∂x(A

(1)(x) − A(2)(x))P (x, t)

− 1
2∂x(A

(1)(x) + A(2)(x))P1(x, t) + 1
2∂2

x (B(1)(x) − B(2)(x))P (x, t)

+ 1
2∂2

x (B(1)(x) + B(2)(x))P1(x, t). (B.6)

For equation (B.6), we cannot analytically obtain the exact expression for the stationary
solution.
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